Economic impact of inappropriate antibiotic use: the case of upper respiratory tract infections in Ghana

Jip Janssen¹, Samuel Afari-Asiedu², Annelie Monnier³, Martha Ali Abdulai², Theresa Tawiah², Heiman Wertheim^{3*}, Rob Baltussen¹, Kwaku Poku Asante²

¹ Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands. ² Kintampo Health Research Center, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana. ³ Department of Medical Microbiology, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands

Introduction

- An important driver of antibiotic resistance in low and middle-income countries (LMICs) is inappropriate antibiotic use.
- Inappropriate antibiotic use is prevalent in LMICs due to inadequate access to approved healthcare accentuated by a high disease burden.
- Recent studies have shown that lack of knowledge and not being able to recognise antibiotics may play a considerable role in inappropriate use.
- The estimated future AMR cost are potentially large, imposing a major cost to the world economy especially, in LMICs.
- However, very little is known about the potential economic impact of inappropriate antibiotic use in LMICs.
- The objective of this study was to perform an economic impact analysis of inappropriate antibiotic use, related to upper respiratory tract infections (URIs) treated with antibiotics in Ghana.

Methods

- A top-down, retrospective economic impact analysis of inappropriate antibiotic use for URIs was conducted.
- Two inappropriate antibiotic use situations were considered: 1.
 URIs treated with antibiotics, against recommendations from clinical guidelines; and 2. URIs that should have been treated with antibiotics according to clinical guidelines, but were not.
- The analysis included data collected in Ghana during the ABACUS project (household surveys and exit-interviews among consumers buying antibiotics), scientific literature and stakeholder consultations.
- Cost data was recorded in Ghanaian cedi (GHS), adjusted to 2020 price levels where relevant and subsequently converted into United States dollars (USD) using the average annual 2020 exchange rate.
- First, all variables were combined to calculate the total annual health care cost, productivity loss, travel cost, cumulative cost and cumulative cost per capita. Second, we determined the cost drivers.
- Additionally, cost saving projections were computed based on potential effects of future interventions that improve antibiotic use.

Acknowledgements

- Wellcome Trust, UK
- Radboudumc & Radboudumc Center for Infectious Diseases, Nijmegen, The
 Netherlands
- Kintampo Health Research Centre-Ghana Health Service, Kintampo, Ghana

Results

Inappropriate antibiotic use: total annual cost and cost drivers

The total annual cost for inappropriate use situations 1 and 2 are presented in Table 1.

- For situation 1, the total annual cumulative cost (689 million (M) USD) mainly consisted of productivity loss (654 M USD 95%), followed by health care cost (18 M USD 3%) and, lastly, travel cost (17 M USD 2%).
- Regarding situation 2, the total annual cumulative cost (286 M USD) was also mostly accounted for by productivity loss (277 M USD 97%), followed by travel cost (7 M USD 3%) and, lastly, health care cost (2 M USD 1%).

Table 1. Economic analyses inappropriate use situations 1 & 2: outcomes – 2020, rounded

Total annual	Inappropriate	use situation 1		Inappropriate use situation 2			
cost	VARIABLE	VALUE (USD)	% of CC	VARIABLE	VALUE (USD)	% of CC*	
	Health care cost	17,758,000	3	Health care cost	1,606,000	1	
	Productivity loss	654,044,000	95	Productivity loss	276,852,000	97	
	Travel cost	17,094,000	2	Travel cost	7,236,000	3	
	Cumulative cost (CC)	688,896,000		Cumulative cost (CC)	285,694,000		
	Cumulative cost per capita [†]	22.25		Cumulative cost per capita [†]	9.23		

USD: United States dollar. *: Sum exceeds 100% due to rounding. Projected population of Ghana in 2020: 30,955,204.

Cost saving projections

Different cost saving projections for both situations are presented in Table 2, based on hypothesised reductions in situation occurrences due to future efforts that reduce inappropriate antibiotic use.

- Possible cumulative cost savings are higher for situation 1 (69 M USD 482 M USD) than for 2 (29 M USD 200 M USD) at national level for Ghana.
- For both situations, preventing productivity loss offers most room for cost reductions.

Table 2. Potential effects of reducing inappropriate antibiotic use: cost saving projections – rounded

	Inappropriate use situation 1. Projected reduction rates (%) & associated cost savings (millions)					Inappropriate use situation 2. Projected reduction rates (%) & associated cost savings (millions)				
	- 0% (baseline*)	- 10%	- 30%	- 50%	- 70%	- 0% (baseline*)	- 10%	- 30%	- 50%	- 70%
Number of situation	19	17	14	10	6	8	7	6	4	2
occurrences										
Health care cost savings (USD)	0	2	5	9	12	0	0.2	0.5	0.8	1
Productivity loss savings (USD)	0	65	196	327	458	0	28	83	138	194
Travel cost savings (USD)	0	2	5	9	12	0	0.7	2	4	5
Cumulative cost savings (USD)	0	69	207	344	482	0	29	86	143	200

USD: United States dollar

Conclusion

- This study demonstrates that inappropriate antibiotic use leads to substantial economic cost in a LMIC setting that could have been prevented.
 - We recommend investment in novel strategies to counter these unnecessary expenditures. As the projections indicate, this may result in considerable cost reductions.
- By tackling inappropriate use, progress can be made in combatting antimicrobial resistance.

